Copied to
clipboard

G = C23⋊C45D5order 320 = 26·5

The semidirect product of C23⋊C4 and D5 acting through Inn(C23⋊C4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23⋊C45D5, C23.5(C4×D5), (C2×Dic10)⋊6C4, C23⋊Dic53C2, C22.23(D4×D5), (C2×D4).119D10, C22⋊C4.43D10, (C22×Dic5)⋊4C4, (D4×C10).7C22, C23.1(C22×D5), (C2×Dic5).188D4, C23.1D103C2, (C22×C10).1C23, C23.D5.1C22, C54(C23.C23), C23.11D1023C2, Dic5.20(C22⋊C4), (C22×Dic5).25C22, (C2×C4×D5)⋊1C4, (C2×C5⋊D4)⋊1C4, (C2×C4).5(C4×D5), (C5×C23⋊C4)⋊3C2, C22.12(C2×C4×D5), (C2×C20).19(C2×C4), (C2×C10).16(C2×D4), C2.11(D5×C22⋊C4), (C2×D42D5).1C2, C10.51(C2×C22⋊C4), (C22×C10).5(C2×C4), (C2×Dic5).1(C2×C4), (C22×D5).1(C2×C4), (C2×C5⋊D4).1C22, (C2×C10).107(C22×C4), (C5×C22⋊C4).82C22, SmallGroup(320,367)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C23⋊C45D5
C1C5C10C2×C10C22×C10C22×Dic5C2×D42D5 — C23⋊C45D5
C5C10C2×C10 — C23⋊C45D5
C1C2C23C23⋊C4

Generators and relations for C23⋊C45D5
 G = < a,b,c,d,e,f | a2=b2=c2=d4=e5=f2=1, ab=ba, faf=ac=ca, dad-1=abc, ae=ea, dbd-1=bc=cb, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf=bcd, fef=e-1 >

Subgroups: 622 in 158 conjugacy classes, 51 normal (31 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C23⋊C4, C23⋊C4, C42⋊C2, C2×C4○D4, Dic10, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C23.C23, C4×Dic5, C10.D4, C23.D5, C5×C22⋊C4, C2×Dic10, C2×C4×D5, D42D5, C22×Dic5, C2×C5⋊D4, D4×C10, C23.1D10, C23⋊Dic5, C5×C23⋊C4, C23.11D10, C2×D42D5, C23⋊C45D5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, D10, C2×C22⋊C4, C4×D5, C22×D5, C23.C23, C2×C4×D5, D4×D5, D5×C22⋊C4, C23⋊C45D5

Smallest permutation representation of C23⋊C45D5
On 80 points
Generators in S80
(1 44)(2 45)(3 41)(4 42)(5 43)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 76)(62 77)(63 78)(64 79)(65 80)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)(41 46)(42 47)(43 48)(44 49)(45 50)(51 56)(52 57)(53 58)(54 59)(55 60)(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)
(1 34 14 24)(2 35 15 25)(3 31 11 21)(4 32 12 22)(5 33 13 23)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)(41 66 56 71)(42 67 57 72)(43 68 58 73)(44 69 59 74)(45 70 60 75)(46 61 51 76)(47 62 52 77)(48 63 53 78)(49 64 54 79)(50 65 55 80)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 33)(2 32)(3 31)(4 35)(5 34)(6 36)(7 40)(8 39)(9 38)(10 37)(11 26)(12 30)(13 29)(14 28)(15 27)(16 21)(17 25)(18 24)(19 23)(20 22)(41 76)(42 80)(43 79)(44 78)(45 77)(46 71)(47 75)(48 74)(49 73)(50 72)(51 61)(52 65)(53 64)(54 63)(55 62)(56 66)(57 70)(58 69)(59 68)(60 67)

G:=sub<Sym(80)| (1,44)(2,45)(3,41)(4,42)(5,43)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80), (1,34,14,24)(2,35,15,25)(3,31,11,21)(4,32,12,22)(5,33,13,23)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,66,56,71)(42,67,57,72)(43,68,58,73)(44,69,59,74)(45,70,60,75)(46,61,51,76)(47,62,52,77)(48,63,53,78)(49,64,54,79)(50,65,55,80), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,33)(2,32)(3,31)(4,35)(5,34)(6,36)(7,40)(8,39)(9,38)(10,37)(11,26)(12,30)(13,29)(14,28)(15,27)(16,21)(17,25)(18,24)(19,23)(20,22)(41,76)(42,80)(43,79)(44,78)(45,77)(46,71)(47,75)(48,74)(49,73)(50,72)(51,61)(52,65)(53,64)(54,63)(55,62)(56,66)(57,70)(58,69)(59,68)(60,67)>;

G:=Group( (1,44)(2,45)(3,41)(4,42)(5,43)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41,46)(42,47)(43,48)(44,49)(45,50)(51,56)(52,57)(53,58)(54,59)(55,60)(61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80), (1,34,14,24)(2,35,15,25)(3,31,11,21)(4,32,12,22)(5,33,13,23)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30)(41,66,56,71)(42,67,57,72)(43,68,58,73)(44,69,59,74)(45,70,60,75)(46,61,51,76)(47,62,52,77)(48,63,53,78)(49,64,54,79)(50,65,55,80), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,33)(2,32)(3,31)(4,35)(5,34)(6,36)(7,40)(8,39)(9,38)(10,37)(11,26)(12,30)(13,29)(14,28)(15,27)(16,21)(17,25)(18,24)(19,23)(20,22)(41,76)(42,80)(43,79)(44,78)(45,77)(46,71)(47,75)(48,74)(49,73)(50,72)(51,61)(52,65)(53,64)(54,63)(55,62)(56,66)(57,70)(58,69)(59,68)(60,67) );

G=PermutationGroup([[(1,44),(2,45),(3,41),(4,42),(5,43),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80)], [(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,76),(62,77),(63,78),(64,79),(65,80),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40),(41,46),(42,47),(43,48),(44,49),(45,50),(51,56),(52,57),(53,58),(54,59),(55,60),(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80)], [(1,34,14,24),(2,35,15,25),(3,31,11,21),(4,32,12,22),(5,33,13,23),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30),(41,66,56,71),(42,67,57,72),(43,68,58,73),(44,69,59,74),(45,70,60,75),(46,61,51,76),(47,62,52,77),(48,63,53,78),(49,64,54,79),(50,65,55,80)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,33),(2,32),(3,31),(4,35),(5,34),(6,36),(7,40),(8,39),(9,38),(10,37),(11,26),(12,30),(13,29),(14,28),(15,27),(16,21),(17,25),(18,24),(19,23),(20,22),(41,76),(42,80),(43,79),(44,78),(45,77),(46,71),(47,75),(48,74),(49,73),(50,72),(51,61),(52,65),(53,64),(54,63),(55,62),(56,66),(57,70),(58,69),(59,68),(60,67)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F4A···4E4F4G4H4I4J4K···4O5A5B10A10B10C···10H10I10J20A···20J
order12222224···4444444···455101010···10101020···20
size112224204···45510101020···2022224···4888···8

44 irreducible representations

dim1111111111222222448
type+++++++++++-
imageC1C2C2C2C2C2C4C4C4C4D4D5D10D10C4×D5C4×D5C23.C23D4×D5C23⋊C45D5
kernelC23⋊C45D5C23.1D10C23⋊Dic5C5×C23⋊C4C23.11D10C2×D42D5C2×Dic10C2×C4×D5C22×Dic5C2×C5⋊D4C2×Dic5C23⋊C4C22⋊C4C2×D4C2×C4C23C5C22C1
# reps1211212222424244242

Matrix representation of C23⋊C45D5 in GL8(𝔽41)

201133400000
10188330000
8023300000
35831210000
00000090
000000032
000032000
00000900
,
400000000
040000000
004000000
000400000
00000100
00001000
000000040
000000400
,
10000000
01000000
00100000
00010000
000040000
000004000
000000400
000000040
,
302928240000
0113280000
151840120000
15150110000
00000010
00000001
00000100
00001000
,
61000000
400000000
230010000
0184060000
00001000
00000100
00000010
00000001
,
11617130000
0113280000
37142910000
37143000000
00000001
000000400
000004000
00001000

G:=sub<GL(8,GF(41))| [20,10,8,35,0,0,0,0,11,18,0,8,0,0,0,0,33,8,23,31,0,0,0,0,40,33,30,21,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,9,0,0,0,0,9,0,0,0,0,0,0,0,0,32,0,0],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[30,0,15,15,0,0,0,0,29,1,18,15,0,0,0,0,28,13,40,0,0,0,0,0,24,28,12,11,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[6,40,23,0,0,0,0,0,1,0,0,18,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,6,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[11,0,37,37,0,0,0,0,6,1,14,14,0,0,0,0,17,13,29,30,0,0,0,0,13,28,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0] >;

C23⋊C45D5 in GAP, Magma, Sage, TeX

C_2^3\rtimes C_4\rtimes_5D_5
% in TeX

G:=Group("C2^3:C4:5D5");
// GroupNames label

G:=SmallGroup(320,367);
// by ID

G=gap.SmallGroup(320,367);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,219,58,570,438,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^4=e^5=f^2=1,a*b=b*a,f*a*f=a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,d*b*d^-1=b*c=c*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f=b*c*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽